DC20D MKII CONTROLLER COMMUNICATION PROTOCOL

This document is applicable to DC20D MKII controllers.

Software Version

No.	Version	Date	Note
1	V1.0	2021-06-30	Original release.

Chongqing Mebay Technology Co.,Ltd Add: No6-2,Building 4, Gangan Rd, Jiangbei District, Chongqing. Tel: +86-23-6869 3061 Fax: +86-23-6765 8207 Web: http://www.mebay.cn http://www.cqmb.cn E_mail: sales@mebay.cn

1. All rights reserved. No part of this duplication may be reproduced in any material form (including photocopying or storing in any medium by electronic means or others) without the written permission of the copyright holder.

2. MEBAY Technology reserves the rights to change the contents of this document without prior notice.

MCBAY DC20D MKII CONTROLLER COMMUNICATION PROTOCOL

Catalogue

Summary		3
MODBUS b	basic rules	3
Data frame	format	
Communica	ation rules	3
• Informa	ation frame format	3
 Addres 	ss code	3
 Function 	on code	4
 Data a 	rea	4
	ode	5
 Examp 	ble of Information frame format	6
• Error h	nandling	7
Address an	nd data	7
Table 1	1: Data area mapped by function code 03H	7
Table 2	2: Data area mapped by function code 10H	9
 Input s 	status table	9
 Output 	t status table	9
♦ Gear s	status table	9
♦ ATS st	tatus table	9
Runnin	ng status table	9
♦ LED st	tatus table	
♦ Alarm o	code table	10

Summary

This communication protocol describes in detail the read and write command format of this machine's serial port communication and the definition of internal information data for third-party development and use.

The MODBUS communication protocol allows the effective transmission of information and data between the controller and a third-party programmable sequence device (PLC), RTU, SCADA system, DCS, or a third-party MODBUS compatible monitoring system. A set of monitoring system can be established by adding a set of central communication master control display software based on PC (or industrial computer).

MODBUS basic rules

All communication circuits should follow the master and slave mode. In this way, data can be transferred between a master station (such as a PC) and 32 sub-stations.

- ♦ No communication can be started from the slave station.
- ♦ All communications on the loop are transmitted in the form of "information frames".
- If the master station or the slave station receives an information frame containing an unknown command, it will not respond.

Data frame format

The communication transmission is asynchronous, and the unit is byte (data frame). Each data frame transmitted between the master station and the substation is a serial data stream of 10 bits (stop bit is 1 bit) or 11 bits (stop bit is 2 bits).

Start bit	1 bit
Data bit	8 bit
Parity check	None
Stop bit	1 bit
Baud rate	19200

Communication rules

When a communication command is sent to the instrument, the device that matches the corresponding address code receives the communication command, removes the address code, reads the information, and if there is no error, executes the corresponding task, and then returns the execution result to the sender. The returned information includes the address code, the function code to execute the action, the data after the action is executed, and the error check code (CRC). If there is an error, no information will be sent.

Information frame format

Initial structure	Address code	Function code	Data area	CRC	End structure
Delay (equivalent to 4 bytes of time)	1 byte 8 bit	1 byte 8 bit	N byte N*8 bit	2 byte 16 bit	Delay (equivalent to 4 bytes of time)

Address code

The address code is the first data frame (8 bits) in the information frame transmitted in each communication. The address range of the device is 1-255. This byte indicates

that the slave of the address code set by the user will receive the information sent by the master, and each slave has a unique address code, and the response is sent back with its own The address code starts. The address code sent by the host indicates the address of the slave machine to be sent to, and the address code sent by the slave machine indicates the address of the slave machine sent back.

Function code

The function code is the second data transmitted in each communication. The MODBUS communication protocol defines the function code as 1-255 (01H-0FFH). This machine uses part of the function codes. Send as a host request, tell the slave what action to perform through the function code. As the slave machine response, the function code sent by the slave machine is the same as the function code sent by the master, and it indicates that the slave machine has responded to the operation of the master. If the highest bit of the function code sent by the slave is 1 (function code>127), it indicates that the slave has no response or an error.

The following table lists the specific meanings and operations of the function codes.

Function	definition	operational
code		
03H	Read register	Read one or more register data
10H	Write register	Write keyboard register data

03HRead register

The host uses the communication command with the function code of 03H to read the value register in the device (the value register saves the collected various analog quantities and parameter settings). The input register values of the data area mapped by the function code 03H are all 16 bits (2 bytes). In this way, the register values read from the device are all 2 bytes. The maximum number of registers that can be read at one time is 125. The command format of the slave machine response is slave machine address, function code, data area and CRC code. The data in the data area is a double-byte number with every two bytes as a group, with the high byte first.

10HWrite register

The host uses this command to save data to the memory in the device. In the MODBUS communication protocol, the register refers to 16 bits (that is, 2 bytes), and the high bit is first. The points of such devices are all two bytes. The command format is slave address, function code, data area and CRC code.

Data area

The data area varies with the function code.

1. The format of the data area corresponding to the function code 03H: Host sends:

Data sequence	1	2
Data meaning	Initial address	Number of read registers
Number of bytes	2	2

Slave response

Data sequence	1	2
Data meaning	Number of bytes sent	N register data

	back	
Number of bytes	1	Ν

2. Data area format corresponding to function code 10H:

Host sends:

Data sequence	1	2
Data meaning	Register address	Register value
Number of bytes	2	2

Slave response

Data sequence	1	2
Data meaning	Register address	Register value
Number of bytes	2	2

CRC code

The master or slave can use the check code to judge whether the received information is wrong. Sometimes, due to electronic noise or some other interference, the information will change slightly during the transmission. The error check code ensures that the host or slave does not work on the information that is wrong during the transmission. This increases the safety and efficiency of the system. The error check code adopts the CRC-16 check method.

Two-byte error check code, high byte first, low byte last (can be set to low byte first and high byte last through the controller).

Note: The format of the information frame is the same: address code, function code, data area and error check code.

Redundant cyclic code (CRC) contains 2 bytes, namely 16-bit binary. The CRC code is calculated by the sender and placed at the end of the sent message. The device at the receiving end recalculates whether the CRC code of the received message is the same as the received one. If the two are different, it indicates an error.

The calculation method of the CRC code is to first preset the 16-bit registers to all 1. Then gradually process every 8 bits of data information. When calculating the CRC code, only 8 data bits are used, and the start bit and stop bit do not participate in the CRC code calculation.

When calculating the CRC code, the 8-bit data is different from the register data. The result obtained is shifted by one bit to the lower bit, and the highest bit is filled with 0. Check the lowest bit again, if the lowest bit is 1, XOR the contents of the register with the preset number, if the lowest bit is 0, no XOR operation will be performed.

This process has been repeated many times. After the 8th shift, the next 8 bits are different from the contents of the current register. This process is repeated 8 times as last time. When all the data information is processed, the content of the final register is the CRC code value.

The calculation steps of CRC-16 code are: 1. Set the 16-bit CRC register to hexadecimal FFFF; 2. XOR an 8-bit data with the lower 8 bits of the CRC register, and put the result in the CRC register;

3. Shift the content of the CRC register to the right by one bit, fill the highest bit with 0, and check the shifted out bit;

4. If the lowest bit is 0: repeat step 3 (shift again), If the lowest bit is 1: The CRC register is XORed with the hexadecimal number A001;

5. Repeat steps 3 and 4 until the right shift is 8 times, so that the entire 8-bit data has been processed;

6. Repeat steps 2 to 5 for the next data processing;

7. The final CRC register value is the CRC code. When transmitting, the lower 8 bits are sent first, and the upper 8 bits are sent last.

Note: The calculation of the CRC code starts from the <slave address>, except for all the bytes of the <CRC code>.

• Example of Information frame format

Function code 03H

The slave address is 10H, 3 data with the starting address of 1000H (each data is 2 bytes).

The data address in this example is:

Address	Data (Hexadecimal)
1000H	0020H
1001H	0023H
1002H	0026H

Host send	Number of bytes	For example (Hexadecimal)
Slave address	1	10 Send to slave 10
Function code	1	03 Read register
Initial address	2	10 The starting address is 1000H
		00
Number of reads	2	00 Read 3 data (6 bytes in total)
		03
CRC code	2	4A CRC code calculated by the host
		02

Slave response	Number of bytes	For example (Hexadecimal)
Slave address	1	10 Return slave address 10
Function code	1	03 Read register
Number of bytes read	1	06 3 data (6 bytes in total)
Point 1 data	2	00 The address is the content within 1000H 20
Point 2 data	2	00 The address is the content within 1001H 23
Point 3 data	2	00 The address is the content within 1002H 26
CRC code	2	F2 CRC code calculated by the slave 10

Function code 10H

The slave address is 10H, Set the content of the two points with the starting address 2000H (the two points must be written together when writing, otherwise it will be invalid).

The point data address in this example is:

Address	Data (Hexadecimal)	Data meaning
2000H	1DC7H	Controller password
2001H	1111H	Keyboard commands

Host send	Number of bytes	For example (Hexadecimal)
Slave address	1	10 Send to slave 10
Function code	1	10 Write register
Initial address	2	20 The starting address is 2000H 00
Number of writes	2	00 Write 2 data 02
Number of data	1	04 4 bytes in total
Data 1	2	1D Set 1 point data (2 bytes in total) C7
Data 2	2	11 Set 1 point data (2 bytes in total)11
CRC code	2	9F CRC code calculated by the host 41

Slave response	Number of bytes	For example (Hexadecimal)
Slave address	1	10 Return slave address 10
Function code	1	10 Write register
Initial address	2	20 The starting address is 2000H
		00
Number of writes	2	00 Write 2 data (2 bytes in total)
		02
CRC code	2	49 CRC code calculated by the host
		49

• Error handling

If the information received from the host is wrong, it will be ignored by the device.

Address and data		
Table 1: Data a	ea mapped b	y function code 03H

• •	· Table II Bala alou happed by failelien oode oon		
Address	Item	Explain	Length
1000H	Speed value	unsigned	2Bytes
1001H	Battery voltage	unsigned(*10)	2Bytes
1002H	Charging voltage	unsigned(*10)	2Bytes
1003H	Generator frequency	unsigned(*10)	2Bytes
1004H	Generator voltage L1	unsigned	2Bytes

MCBAY DC20D MKII CONTROLLER COMMUNICATION PROTOCOL

	1		
1005H	Generator voltage L2	unsigned	2Bytes
1006H	Generator voltage L3	unsigned	2Bytes
1007H	Generator voltage L1-L2	unsigned	2Bytes
1008H	Generator voltage L2-L3	unsigned	2Bytes
1009H	Generator voltage L3-L1	unsigned	2Bytes
100AH	Generator current L1	unsigned	2Bytes
100BH	Generator current L2	unsigned	2Bytes
100CH	Generator current L3	unsigned	2Bytes
100DH	Running time	unsigned(*10)	2Bytes
100EH	Total running time.H	32bits,unsigned(*10)	2Bytes
100FH	Total running time.L		2Bytes
1010H	Gear status	Gear status table	2Bytes
1011H	Oil pressure value(PSI)	unsigned	2Bytes
1012H	Water temperature value(℃)	unsigned	2Bytes
1013H	Reserve	unsigned	2Bytes
1014H	Reserve	unsigned	2Bytes
1015H	Reserve	unsigned	2Bytes
1016H	Fuel level value(%)	unsigned	2Bytes
1017H	Oil pressure value(KPA)	unsigned	2Bytes
1018H	Reserve	unsigned	2Bytes
1019H	Switch input status	Input status table	2Bytes
101AH	Relay output status	Output status table	2Bytes
101BH	Reserve	unsigned	2Bytes
101CH	Reserve	unsigned	2Bytes
101DH	Reserve	unsigned	2Bytes
101EH	Reserve	unsigned	2Bytes
101FH	LED status	LED status table	2Bytes
1020H	Reserve	unsigned	2Bytes
1021H	Reserve	unsigned	2Bytes
1022H	Reserve	unsigned	2Bytes
1023H	Reserve	unsigned	2Bytes
1024H	Reserve	unsigned	2Bytes
1025H	Reserve	unsigned	2Bytes
1026H	Reserve	unsigned	2Bytes
1027H	ATS status	ATS status table	2Bytes

MCBAY DC20D MKII CONTROLLER COMMUNICATION PROTOCOL

Product model	unsigned	2Bytes
Hardware version	unsigned	2Bytes
Software version	unsigned	2Bytes
Alarm code	Alarm code table	2Bytes
Warning code	Alarm code table	2Bytes
Sensor 1 resistance(Ω)	unsigned	2Bytes
Sensor 2 resistance(Ω)	unsigned	2Bytes
Reserve	unsigned	2Bytes
Reserve	unsigned	2Bytes
	Hardware version Software version Alarm code Warning code Sensor 1 resistance(Ω) Sensor 2 resistance(Ω) Reserve	Hardware versionunsignedSoftware versionunsignedAlarm codeAlarm code tableWarning codeAlarm code tableSensor 1 resistance(Ω)unsignedSensor 2 resistance(Ω)unsignedReserveunsigned

• Table 2: Data area mapped by function code 10H

Address	Item	Explain	Length
2000H	user password	unsigned	2Bytes
2001H	Key command	Stop: 1111H	2Bytes
		Manual: 2222H	
		Automatic: 3333H	
		Start: 5555H	

Input status table

Address	Item	Explain	Length
1032H	AUX. INPUT 1	Valid for 1	1Bit
	AUX. INPUT 2	Valid for 1	1Bit
	AUX. INPUT 3	Valid for 1	1Bit

Output status table

Address	Item	Explain	Length
1033H	FUEL OUTPUT	Valid for 1	1Bit
	CRANK OUTPUT	Valid for 1	1Bit
	AUX.OUTPUT 1	Valid for 1	1Bit
	AUX.OUTPUT 2	Valid for 1	1Bit

• Gear status table

Address	Item	Remarks
0033H	Stop	
0066H	Manual	
0099H	Auto	

ATS status table

Address	Item	Remarks
0066H	NC	
0099H	GEN Closing	

Running status table

No.	Content	Remarks
0	Stop Idle Speed	
1	Under stop	
2	Waiting	
3	Crank Cancel	
4	Crank Interval	
5	Alarm,Reset	This state does not display the delay value

6	Standby	This state does not display the delay value
7	Pre-heat	
8	Pre-oil Supply	
9	Crank Delay	
10	Crank Ready	
11	In Crank	
12	Safety Delay	
13	Idle speed	
14	Speed-up	
15	Temperature-up	
16	Volt-built/up	
17	High-speed warming	
18	Rated running	This state does not display the delay value
19	Mains revert	
20	Cooling running	
21	Gen return	
22	Under stop by radiator	This state does not display the delay value
23	Switching	This state does not display the delay value

♦ LED status table

Address	Item	Explain	Length
1042H	Gens loading	Valid for 1	1Bit
◆ Alarm code table			

Alarm code table		
No.	Content	Remarks
0	None	
1	Emergency stop	
2	Over speed	
3	Under speed	
4	Low oil pressure sensor	
5	Low oil pressure switch	
6	High water temperature sensor	
7	High water temperature switch	
8	High oil temperature switch	
9	Low fuel level switch	
10	Low water level switch	
11	RPM Signal lost	
12	Under battery voltage	
13	Oil pressure sensor open	
14	Water temperature sensor open	
15	Over frequency	
16	Under frequency	
17	Over voltage	
18	Under voltage	
19	Over current	
20	Crank failure	

DC20D MKII CONTROLLER COMMUNICATION PROTOCOL

21	Stop failure/ with RPM	
22	Stop failure/ with Hz	
23	Stop failure/ with oil pressure	
24	Stop failure/ oil pressure switch	